PhD Projects SEIT

Scholarships of $35,000 (AUD) are available for PhD students  who have achieved Honours 1/High Distinction in their UG program and/or have completed a Masters by Research.

Accelerating hypersonic flight is characterised by rapidly changing flow conditions and high heat loads. To achieve sustained combustion in these engines, fuel injectors must be capable of also rapidly responding to changing flow conditions to ensure efficient and effective fuel delivery is maintained.

Progressive Damage Modelling and Crash Simulation for Laminated Composite Structures

The project is concerned with the development of a modelling approach to the simulation of the dynamic response of thin-walled composite structural components subjected to crushing loads. The progressive damage model should be developed and implemented into a FE code using a material characterisation process that is based on the material’s experimentally recorded behaviour.

Comparative Evaluation of Cybersecurity Test Design Strategies and Analysis Techniques

The pervasive cyber threat to DoDs, public sector and industry means cyber vulnerability and penetration assessment (CVPA) and testing is no longer an option but rather about managing an acceptable risk of how much testing is enough (Christensen, 2017 & 2015).

Network Coding for Satellite Communications Systems

The aim of this project is to research network coding techniques for satellite communication systems. Specifically, this project will investigate techniques and methods to improve the performance and efficiency of satellite communication systems.

Uncertainty quantifications in insect flight simulations: effect of flow gust and insect/wing geometry and kinematics

The mechanisms of insect flight become one of central issues for researchers and engineers who wish to develop aerial crafts with superior locomotion capability. One of the most fascinating yet least understood attributes of aerial animals is the uncertainties from environment flow gust as well as insect/wing geometry and kinematics.

Learning control of renewable energy systems

Renewable energy has shown promising future of practical applications. Advanced learning and control technology will enable efficient renewable energy systems. This project will explore learning control technologies to enhance the efficiency in renewable energy systems.

Investigation of Methods and Methodologies for Systems Engineering of Non-functional Requirements

Systems Engineering methodology applies aptly to functional design of systems. However, for non-functional requirements, the current methodology does not have a lot to offer and there is a lack of concrete methodologies for non-functional systems engineering. Specific modularization of systems elements is a powerful tool for the design of the non-functional requirements into the systems.

Cloud and cloud shadow removal from optical remote sensing images

The first challenge in information extraction from optical satellite images of the Earth’s surface is the collection of cloud free images, as one third of this data can be affected by cloud cover. Clouds dramatically affect the signal transmission in complex ways due to their different shapes, heights, and distributions and thus contaminate the data from land and water. Cloudy image restoration is a vital step in the remote sensing image processing chain. Correction of cloudy data can substantially increase the number of useable images and pixels available for later applications such as mapping land cover types and sea surface features. Cloud correction techniques

Pages